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This work proposes metric learning for fast similarity-based scene retrieval of unstructured ensembles of
trajectory data from large databases. We present a novel representation learning approach using Siamese
Metric Learning that approximates a distance preserving low-dimensional representation and that learns to
estimate reasonable solutions to the assignment problem. To this end, we employ a Temporal Convolutional
Network architecture that we extend with a gating mechanism to enable learning from sparse data, leading to
solutions to the assignment problem exhibiting varying degrees of sparsity.

Our experimental results on professional soccer tracking data provides insights on learned features and
embeddings, as well as on generalization, sensitivity and network architectural considerations. Our low
approximation errors for learned representations and the interactive performance with retrieval times several
magnitudes smaller shows that we outperform previous state of the art.

CCS Concepts: • Computing methodologies→Machine learning; • Information systems→ Informa-
tion retrieval.
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1 INTRODUCTION
The wide spread of devices and systems that generate positioning data allows for trajectory mining
in a variety of applications. This has the potential to improve and revolutionize how we are
currently working with unstructured multi-agent trajectory data, e.g., in sports [31], in mobility
monitoring [33] or when we optimize transportation [11, 21]. However, as such trajectory data is
often unstructured and unlabeled, their useful exploitation is still limited.
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For instance, in sports applications, a central problem is the search and retrieval of similar
occurrences in trajectory databases [31]. Such occurrences, i.e., scenes, can be formally defined
as ensembles of trajectories, i.e., trajectories of the movements of multiple agents. Before we can
compare (i.e., derive the similarity between) two scenes, we need to find an optimal assignment
(assignment problem) for the particular trajectories, i.e., we need to find the correct match between
the corresponding actors/players. Next, we can calculate a suitable distance metric between scenes.
An incorrect assignment in the first step induces a large error in the estimated distance, i.e., the
similarity between the two scenes. However, alignment and pair-wise comparison quickly becomes
infeasible for larger databases (such as those that are available in the sports industry).
Previous work that deals with the infeasible computational complexity that comes with large

databases either filters the data [10, 31, 41], learns approximations of the optimal assignment
algorithm [40], or constrains the possible assignments themselves [31, 32] and thereby introduces
approximation errors. While these approaches do in fact accelerate search and retrieval, their
primary goal is to reduce the search space. However, this not only results in less optimal assignments
and quality but also yields sub-optimal retrievals due to the limited amount of searchable data.

Team 1 Team 2 Ball

Team 1 Team 2 Ball

Fig. 1. Two scenes from a soccer database.

Fig. 1 illustrates two scenes from a trajectory database
of soccer players of the German Bundesliga. Each scene
shows variations of a reoccurring pattern that can be found
throughout the season. Each single trajectory follows an
inherent strategy and role, that may differ between teams
and even for each player over the course of the game. Our
primary goal is to find such similar scenes without con-
straining neither trajectory assignments nor the total search
space over all samples in the database. A fast search scheme
for high-dimensional trajectory sets is beneficial to sports-
related applications and especially team sports (such as
football, soccer, basketball, etc.), but it is not limited to that:
it is also beneficial for work that is as diverse as searches
similar trajectories in cellular positioning data for human
mobility analysis [33], mining of frequent patterns in urban
transportation [21], clustering air traffic trajectories for op-
timization [11], and even wildlife management in ecological
behaviour analysis [8].
Current scene retrieval systems (especially in sports) are mainly based on manual annotations

by analysts such as [20], or other automatic classification attempts that are equally expensive, e.g.,
highlight extraction using video data [12]. Still, tracking data becomes ubiquitously available and
should become more usable despite it being unstructured. However, among the main challenges
are the indexing and retrieval within these large trajectory datasets [44], given (i) multiple moving
agents and (ii) the quantity of data. First, multiple trajectories of different roles are present, e.g.,
player formations in adversarial team sports. To calculate the distance between two scenes correctly,
a correct assignment between trajectories is key. Simplifying this task by solving assignments with
available meta-information only works for few applications such as player roles [31] in sports.
However, this neither generalizes to other applications nor does it work in all sports. E.g., in soccer
alone at least ten different formations exist [2] and players randomly break formations [2]. On the
other hand, methods to optimally solve the problem such as combinatorial optimization [31] do
not scale well. Second, given a manually annotated query scene, finding similar scenes in an entire
sports season worth of data is computationally expensive. Suitable trajectory similarity functions
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use metrics such as Dynamic Time Warping [29], Longest Common Sub-Sequence [37], or the
Euclidean distance [31] that all need pair-wise comparisons.
This article proposes an approach which presents several solutions to the assignment problem,

and which approximates the optimal distance between ensembles of trajectories, speeding up the
computation needed for scene retrieval. We train a Siamese Neural Network (SNN) which learns a
lower dimensional embedding for a given dataset, and which preserves distances between trajecto-
ries independent from use case specific distance metrics. This accelerates pair-wise comparisons
while keeping the approximation error low (as we show for the Euclidean distancemetric for a whole
season of trajectories from games played in the German Bundesliga). This in turn enables novel
interactive applications that have previously been intractable. Our contributions are as follows:
• We propose sparse and dense estimations to the assignment problem suitable for learning
with deep neural networks. To this end, we extend the learning model with Gated Temporal
Convolutions as a masking mechanism.
• We show that the learned embedding of a Siamese Neural Network, using these Gated
Temporal Convolutions, approximates trajectory distances with a low approximation error.
• We show and discuss results for the scene similarity on a large soccer trajectory dataset. Our
study includes an analysis of the embedding neighborhood and considers real wall-clock
time compared to prior state of the art. We furthermore evaluate the generalizability of our
method and perform detailed ablation studies.

The rest of the article is structured as follows. Sec. 2 discusses related work on trajectory similarity,
sports scene retrieval systems, and approaches which solve the assignment problem. Sec. 3 formal-
izes the problem and Sec. 4 presents the details of our method. We show our experimental setup in
Sec. 5 and discuss the results in Sec. 6. Sec. 7 concludes.

2 RELATEDWORK
We discuss related work on the assignment problem (Sec 2.1), learning distance metrics (Sec. 2.2),
and the search and retrieval of trajectories (Sec. 2.3), as well as the search and retrieval’s special
cases with event data (Sec. 2.3.1) or with tracking data (Sec. 2.3.2).

As we primarily target sports scene analysis, we give a brief overview of relevant work from that
area. Usually, methods applied here do not retrieve similar scenes but analyze sports event- and
position-data to predict different properties, e.g., classification and clustering. Recently, Wenninger
et al. [39] evaluated modern machine learning models, e.g., convolutional or recurrent networks,
to predict tactical behavior in beach volleyball such as play direction and their success. An older
branch of research, among others [13, 26, 30], investigated the use of self-organizing maps that use
the learned map for downstream tasks such as classification. The specific problem of classifying
ensembles of trajectories was discussed in [34], however, the assignment problem was solved
by design (the data was provided through skeletal tracking). The analysis of spatio-temporal
trajectories of multiple players was proposed in [6, 7]. Trajectories are approximated with splines
that are filtered and normalized. Several similarity measures are compared in terms of classification
accuracy using the reduced representations. However, as assignments must be provided manually,
the applicability is limited.

2.1 The Assignment Problem
The Hungarian algorithm [18] is an optimal solver for the assignment problem. It is used in object
detection [5] to match proposed and actual object bounding boxes, in object tracking [43] to
associate the identity of objects over time, and in identification [40] to match words based on
their semantic similarity. Approximations [19] use neural networks based on similarity or cost
matrices. As neural networks are also capable of processing unaligned data, the pre-processing
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step can be skipped, either as part of the network architecture [19, 40] or as part of the learning
objective [5, 43]. In our work we choose to learn it as part of the learning objective and jointly
optimize a distance-preserving lower dimensional representation of the data that accelerates pair-
wise comparisons. To this end, we extend the model architecture with masks to support sparse
data, i.e., with Gated Temporal Convolutions, to learn assignment methods from the data.

2.2 Distance Metric Learning
In metric learning, relevant approaches either learn a better approximation of the distance function
or instead a lower dimensional transformation of the data that preserves a distance. Approximations
as proposed in [17] are motivated by the fact that exact metrics are either not smooth enough
(over small perturbations in the inputs) or too unreliable for the application. They formulate metric
learning as a regression problem that is solved with Siamese Neural Networks [4] that learn the
similarity. Similar to our work, a distance acts as a regression target to the network. However,
the proposed model only emits a distance given two inputs, i.e., the Siamese network must be
applied to a pair of data. In contrast, our approach also allows to process single inputs, so that
we can construct their embedding offline, before using them in search. This allows us to quickly
search for similar examples. Sentence-BERT [27] approximates similarity for natural language
processing, specifically for sentence-pair regression, using ideas similar to dimensionality reduction.
The authors propose an attention-based transformer network together with Siamese or Triplet
Networks to learn a semantically meaningful embedding based on a pair-wise similarity metric
as regression target (i.e., they estimate semantic textual similarity). This approach aims to learn
a lower dimensional embedding for pairs of sentences. The authors do not focus on ensembles
of sentences and have no assignment problem to deal with. However, we build upon the basic
methodology and extend it appropriately for learning an ensemble similarity.

2.3 Trajectory retrieval
Most trajectory retrieval systems make special assumptions such as temporal bounds of interesting
search spaces or focus on other data-inherent properties that cannot be generalized. For instance,
Yadamjav et al. [41] propose a framework for query retrieval of similarly co-moving trajectories,
e.g., convoys of objects. An indexing structure filters the dataset based on temporal constraints
(i.e., discards old samples to improve computational performance) and is fast due to an in-memory
table lookup. Similarity metrics such as a point-wise max-min distance, i.e., Hausdorff distance, are
extended to work on subsets of cluster points. In contrast, our approach builds a distance-preserving
approximated representation of the complete dataset and thus allows scaling to larger problems,
while at the same time accelerating lookup speed.

2.3.1 Event-Data Based Sports Play Retrieval. Instead of predicting similarities directly from trajec-
tory data, the methods that search in event-data develop query formulations on annotated event-data.
The work closest to ours is presented by Richly et al. [28]. They aim to retrieve scenes using a
graphical query language composed of action sequences in user-specified areas. Another approach
by Decroos et al. [9] uses an SQL-like query language instead, which also allows the OR-operator
to relax search constraints over characteristic, user-defined functions.

However, annotated event data is both expensive to acquire and relatively sparse. Moreover, as
such search approaches operate over event-data, they are inherently limited in their performance.
Queries defined on tracking-data on the other hand allow to search for very specific situations.
More importantly though, the need for event-data makes these approaches only applicable when
(expensive) event-data annotations of sufficiently high quality are available.
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2.3.2 Tracking-Data Based Sports Play Retrieval. There is also work that uses trajectory ensembles
directly as queries for similarity-based retrieval. Such methods must handle the assignment problem
and the expensive distance computation.

Chalkboarding [31] approximates the assignment problem using player roles and a match- and
team-specific role/formation template, which are learned from data as proposed in [3]. While this
introduces an unquantified error, it speeds up retrievals considerably. However, the approach does
not generalize well to other domains such as soccer, where the role assignments are not static within
matches and teams. Sha et al. [32] address the assignment problem with hierarchical templates
which are iteratively aligned over all matches. This relaxes the fixed role assignment, making
it applicable to more applications. However, the hierarchy depth is not determined by semantic
properties of the data, but with respect to computation speed, e.g., cluster size. For each cluster,
a suboptimal assignment template is then used for the expensive distance computations on data
of (unchanged) high dimensionality. To compare distant elements, even less optimal assignment
templates are used. In contrast, we propose a data-driven approach to the assignment problem that
uses optimal solutions as learning targets instead of finding arbitrary approximations.
An acceleration of distance computations can be achieved by a pre-clustering of the search

space [10, 32]. Sha et al. [32] propose a k-means clustering that strongly depends on the Euclidean
distance as its similarity measure to cluster the scenes. An interesting way to refine search results
was proposed by Di et al. [10], who extended Chalkboarding by using a ranking function that is
sensitive to user preferences, which are determined from simulated click-through data. In contrast
to clustering approaches we learn a low-dimensional representation and solve scene retrieval
without a pre-clustering of the scenes, making our approach agnostic to the underlying similarity
metric.
An alternative to Chalkboarding is proposed by Wang et al. [38] who matches segments into

coherent parts, i.e., ball possession phases, which they process analogously to sentences in natural
language processing. Their network learns relative similarities and relations between these segments.
While a qualitative user-study proves it to be superior to Chalkboarding, it lacks flexibility. As
user-drawn query-sketches cannot be used as queries, their framework cannot handle sparsity in
queries. Furthermore, single trajectories from an ensemble are indiscernible to the model, e.g., users
cannot give higher weight to the ball’s trajectory if that is not learned during model training. The
embedding only represents a relative ordering that is specific to a similarity metric that includes
relevance features for the whole ensemble.

3 PROBLEM FORMULATION
In this work, we investigate the more general case of trajectories ensemble retrieval (i.e., scene
retrieval) where the ordering between trajectories is unknown. We consider trajectory ensembles
as unordered, fix-sized sets of trajectories. Trajectories are temporally ordered sets of data such as
spatial positions or other arbitrary types of information, and we assume that the trajectories are
spaced equidistant. We represent trajectories as 𝑆 ×𝑇 matrices, where 𝑆 is the spatial dimension of
the trajectory, as follows:

®𝑥 =


𝑥11 𝑥12 ... 𝑥1𝑇
𝑥21 𝑥22 ... 𝑥2𝑇

...
...

. . .
...

𝑥𝑆1 𝑥𝑆2 ... 𝑥𝑆𝑇


ACM Trans. Intell. Syst. Technol., Vol. 13, No. 1, Article 6. Publication date: February 2022.



6:6 Löffler and Reeb, et al.

1 0 1 2 3 4 5
0

1

2

3
Trajectory ensemble A

Trajectory 0
Trajectory 1

1 0 1 2 3 4 5

Trajectory ensemble B
Trajectory 1
Trajectory 0

Fig. 2. Two trajectory ensembles with time increasing from left to right (-1 to 5). In the left ensemble A,
the trajectories are ordered top-down, in the right ensemble B, they are ordered bottom-up. Aside from the
different indexing, the data are identical.

For 3D trajectories we set 𝑆 = 3 and for 2D trajectories 𝑆 = 2, respectively. The distance 𝑑 between
two trajectories ®𝑥 and ®𝑥 ′ is given by the average Euclidean distance at each point in time:

𝑑 ( ®𝑥, ®𝑥 ′) = 1
𝑇

𝑇∑︁
𝑡=1
| | ®𝑥:,𝑡 − ®𝑥 ′:,𝑡 | |2 (1)

We chose the Euclidean distance based on the evaluation of various distance functions for the
sports use case [31]. However, our method does not depend on it, as we use Siamese Networks as
general function approximators.
Trajectory ensembles are given by 𝑋 = {®𝑥 (1) , ®𝑥 (2) , ..., ®𝑥 (𝑁 ) } where ®𝑥 (1) , .., ®𝑥 (𝑁 ) are trajectories.

Analogous to trajectories, we represent trajectory ensembles as tensors of shape 𝑁 × 𝑆 ×𝑇 . Note
that we indexed the trajectories containing 𝑋 with ascending integers. This ordering between
trajectories is arbitrary and differs from the ordering of data-points within trajectories: within a
trajectory the order has physical meaning, i.e., the time stamp. This has no equivalent for trajectories
in an ensemble. Swapping two differently-valued and indexed data-points in a trajectory destroys
its identity. For a trajectory ensemble, this is not the case: {®𝑥 (1) , ®𝑥 (2) } = {®𝑥 (2) , ®𝑥 (1) }. This arbitrary
indexing also represents one of the core problems, formally known as the assignment problem.
Fig. 2 illustrates the assignment problem. The optimal assignment of ensemble 𝐴 and 𝐵 results

in a distance of 0, because they match perfectly, i.e., trajectory 0 from 𝐴 with trajectory 1 from
𝐵. However, there exist more possible permutations for which the distance is much greater than
0. With every new ensemble, this optimal assignment has to be calculated again, before further
algorithms like distance calculations or clustering can be applied. In this work, we propose a
learning approach to this problem, which approximates the assignment optimization and preserves
distances, so that distance calculations or clustering remain possible. This example shows that
defining the distance between trajectory ensembles is more complex than for pairs of trajectories.
To compute their distances, a permutational optimization of their component’s order is necessary
for all pairs of ensembles 𝑋 and 𝑋 ′, that minimizes the sum over all distances between component
trajectories. The Hungarian algorithm [18] solves this in polynomial time of O(𝑛3) by iterating
over the cost adjacency matrix, but is still too slow for large databases.

Let 𝑃 (𝑋,𝑋 ′) be the permutation function found by the Hungarian algorithm which aligns 𝑋 to
𝑋 ′. When 𝑃 (𝑋,𝑋 ′) is applied to 𝑋 , the indices that give the ordering are re-assigned in such a way
that the sum of distances between trajectories with equal indices in 𝑋 and 𝑋 ′ is globally minimal:

𝑑 (𝑋,𝑋 ′) =
𝑁∑︁
𝑖=1

𝑓 (𝑋𝑃 (𝑋,𝑋 ′) (𝑖) , 𝑋
′
𝑖 ), (2)

with 𝑃 (𝑋,𝑋 ′) = min∑𝑁
𝑖=1 𝑓 (𝑋𝑔 (𝑖 ) ,𝑋 ′𝑖 ) {𝑔 : 𝑔 ∈ {1, . . . , 𝑁 } → {1, . . . , 𝑁 }} and 𝑔 being invertible.
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Until now, we considered trajectory ensembles as unordered sets and treated trajectories equally.
However, in special cases, such as team sports, we can apply some obvious simplifications without
loss of generality. For soccer, we treat both teams and the ball differently, i.e., we always align
attacking to attacking and defending to defending players, the ball trajectory to the ball trajectory,
goalkeepers to goalkeepers. To compute the overall distance between two scenes, we sum up all
individual trajectory ensemble distances, e.g., for soccer the distance between the attacking or
defending team and the ball. These simplifications reduce the problem size of the trajectories that
have to be assigned, in the case of soccer from 23 to 10.
We draw an example based on the two scenes from Fig. 1. Each trajectory ensemble has a

color, i.e., the attacking team in blue, the defending in green and the ball in red. We compute the
distance between the two scenes as follows: (1) we compute the optimal assignment of the first
team’s trajectories, (2) we compute 𝑑0 by adding up the trajectory distances between all matched
trajectories, (3) we repeat step 1 and 2 for the second team (yielding 𝑑1), (4) we add up all trajectory
distances between the ball trajectories and both goal-keeper trajectories (yielding 𝑑2), and (5) we
finally sum up all distances: 𝑑0 + 𝑑1 + 𝑑2 which gives the total distance 𝑑 .

4 DEEP SIAMESE METRIC LEARNING
With Deep Siamese Metric Learning, we propose a principled approach to approximate the exact
similarity between trajectory ensembles. Instead of a hand-crafted approximation, we directly learn
the exact similarity while also improving retrieval speed. The similarity metrics’ accuracy directly
depends on how the assignment problem is approximated, hence we propose four approaches that
aim to alleviate previous limitations.

As traditional methods do not scale well, their search scope is limited to small scene datasets. This
is due to the high time complexity, as described previously. For (optimal) trajectory assignments,
the time complexity is O(𝑠 · 𝑛3) using the optimized Hungarian algorithm for 𝑠 scenes. In our
approach, we simplify the search space using metric learning and different assignment methods,
reducing the cost to O(𝑠 ·𝑀), where𝑀 is the embedding size of the metric learner.
First, for metric learning, we follow a similar idea as Sentence-BERT [27], that uses a Siamese

Neural Network to map natural language sentences into an embedding in which the cosine distance
corresponds to the semantics’ similarity in a supervised regression setting. In our work we transfer
and extend that idea to trajectory ensemble similarity. We map scenes into an embedding space in
which the distance can be computed more efficiently (while being close to the original distance).
To select the best distance for the sports use case we rely on previous work [31], where the authors
evaluated a set of commonly used trajectory similarity metrics with regard to their suitability
to classify sports plays into 38 distinct categories chosen by experts. Their results showed the
suitability of the 𝐿2 similarity. However, our approach is not limited to this choice as we can resort
to any other similarity measure as well.

Second, we deal with the assignment problem in our framework, as well. As calculating the opti-
mal assignment is too expensive to compute for datasets of practically relevant size, approximations
were used previously, e.g., based on roles and formations in sports [31]. However, these fixed assign-
ments of roles do not generalize well [32], not even to variations in the same sport, and neither to
other use cases with more trajectories and formations [2]. Moreover, this fundamental assignment
problem is intrinsic to sports, as creative changes to fixed strategies are especially beneficial for
success [25]. These circumstances motivate alternative solutions to the assignment problem, i.e.,
forms of sparse encoding, location-based grid assignments or even random assignments, that we
propose in Sec. 4.3.
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𝑋 𝑋 ′

®̂𝑥 ®̂𝑥 ′

𝑓𝜃 (𝑋 ) 𝑓𝜃 (𝑋 ′)

𝑑 (𝑋,𝑋 ′)

𝑑 ( ®̂𝑥, ®̂𝑥 ′)

≈

Fig. 3. Schematic of the approach that projects the high dimensional data to a low dimensional representation.
The trajectory ensembles 𝑋 and 𝑋 ′ are passed through a Siamese network 𝑓𝜃 producing the embedded scenes
®̂𝑥 and ®̂𝑥 ′ respectively. The network is then trained such that the distance in the embedding 𝑑 matches the
ground-truth 𝑑 .

4.1 Objective and Metric Learning Scheme
We consider a non-linear function approximator 𝑓𝜃 with parameters 𝜃 that maps inputs 𝑋 ∈
S = R𝑁×2×𝑇 (e.g., a trajectory ensemble) into an embedding Ŝ = R𝑀 such that the distance
𝑑 : S × S → R over the input space is preserved in Ŝ. More specifically, the distance function
𝑑 : Ŝ × Ŝ → R over the embedding preserves the property 𝑑 ( ®̂𝑥, ®̂𝑥 ′) ≈ 𝑑 (𝑋,𝑋 ′) with ®̂𝑥 = 𝑓𝜃 (𝑋 ) for
all 𝑋 ∈ S. Fig. 3 illustrates the approach. If 𝑑 and 𝑑 are equal for every scene pair 𝑋 and 𝑋 ′ we
can evaluate 𝑑 instead of calculating the computationally expensive ground-truth distance 𝑑 . This
speeds up the retrieval time considerably.
We use the same distance function, i.e., the Euclidean distance 𝑑 ( ®̂𝑥, ®̂𝑥 ′) = | | ®̂𝑥 − ®̂𝑥 ′ | |2, as the

distance function 𝑑 between embedded inputs. This choice enables a wide range of machine
learning algorithms to the embedding for further processing, e.g., to restrict the search space via
clustering [32]. For 𝑓𝜃 , we use a neural network composed of several residual temporal convolution
layers for the feature extraction together with fully-connected layers to map these features to the
embedding space. The observations are hence pairs of trajectory ensembles, i.e., (𝑋,𝑋 ′).
The dataset size is quadratic in the number of trajectory ensembles available and training on

all permutations hence quickly becomes infeasible. Instead, we sample pairs uniformly at random
and minimize the empirical risk, i.e., min𝜃 E𝑥,𝑦∼D [𝐿(𝑓𝜃 (𝑥), 𝑦)] where D is the data generating
distribution. We use the following loss function:

𝐿(𝑋,𝑋 ′) = ( | |𝑓𝜃 (𝑋 ) − 𝑓𝜃 (𝑋 ′) | |2 − 𝑑 (𝑋,𝑋 ′))2, (3)

i.e., the Mean Squared Error (MSE) and include two regularization terms:

| |𝑓𝜃 (𝑋 ) | |2 + ||𝑓𝜃 (𝑋 ′) | |2 + ||𝜃 | |2. (4)

The first term penalizes embedded points far from the origin and the second is a standard 𝐿2
weight regularization term that penalizes large weights in the parameters of the neural network.
Note that the first term is required for convergence as the norm of the difference between two
points is shift-invariant, i.e., as there are infinite optimal solutions if no order is imposed.
We use two identical Siamese Neural Networks (SNN) [4] that process distinct inputs that

are joined by a metric function, i.e., the distance function. Each twin projects the input into the
embedding space, on which we compute the loss. In contrast to the conventional use, we never
join the outputs of the twins in a joint layer. Instead, the Euclidean distance of their outputs is
directly compared to the ground-truth distance. This is due to the different problem formulation,
as conventional SNNs learn a similarity metric based on class labels, whereas we use the networks
to directly learn an existing metric [27]. Note that the structure of this solution is well tailored to
the problem setting: 𝑓𝜃 is deterministic, therefore 𝑑 ( ®𝑋, ®𝑋 ) = 𝑑 ( ®̂𝑥, ®̂𝑥) = 0 (identity is indiscernible)
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and 𝑑 ( ®̂𝑥, ®̂𝑥 ′) = 𝑑 ( ®̂𝑥 ′, ®̂𝑥) (symmetry) is given by construction. In essence, the SNN learns a distance-
preserving dimensionality reduction.

4.2 Siamese Network Architecture
Our SNN processes sparse temporal data. While historically recurrent networks such as Long
Short-Term Memory (LSTM) [15] have been the dominant approach to process time-series data,
more recent variants of convolutional networks such as the Temporal Convolutional Network
(TCN) are more successful [35, 36]. Bai et al. [1] apply TCN to a wide variety of datasets with en
par or better results than LSTMs while being faster to train.

Gated Temporal Convolution 

conv

split

σ
Χ

cat

2C x T

C x T C x T

2C x T

Fig. 4. Schematic of the gated
temporal convolution operation.

The core difference of TCNs compared to classical convolu-
tional networks is the left-padded same-convolution. Intuitively,
this means that the history is padded while the present is not.
This mechanism implicitly assigns weight to data based on its re-
cency, as values in the past are replaced by zero-padding. A large
benefit is the performance: TCNs are inherently parallelizable as
they compute responses locally and stationary by using the last
𝑘 time-steps. TCNs are hence well suited for data with a maxi-
mum dependency length, such as the trajectory ensembles in this
work, for which we require a common length by construction. In
addition, the assignment methods may produce sparse input data
(see Sec. 4.3) as, for instance, there are at least 47 roles in soccer
with only 23 trajectories including the ball. Hence, we require
an architecture that can easily handle missing inputs. Prior work on TCN [35, 36, 42] provides
methods that explicitly handle sparsity successfully in the domains of image and audio processing.
We adapt the gating mechanism from [42] where the masks are passed to convolution layers

alongside the data. The neural network continuously updates the masks and uses their information
to extract features. Following a convolution operation, the masks are applied to the data in a
differentiable way, i.e., by multiplying the data with the sigmoid of the masks. This is visualized
in Fig. 4. The input x ∈ 2𝐶 × 𝑇 is composed of 𝐶 × 𝑇 values and an equally shaped mask. The
temporal convolution layer extracts features in x and updates the mask. The mask channels are
then passed through the sigmoid function and multiplied element-wise to the value channels. In
the end, value and mask channels are concatenated and returned. We adapt this gating mechanism
to 1-dimensional time-series data for TCNs and refer to it as Gated Temporal Convolution.

Gated Temporal Conv.

Gated Temporal Conv.

ReLu

+

x

x̂

ReLu

Fig. 5. Residual Gated
Temporal Convolution.

The network architecture itself is similar to the one in [1] and is based
on a Residual Network (ResNet) [14]. While we selected this architecture
due to its previous use with gating mechanisms (although on data from a
different domain), its general popularity, and typically good performance,
our proposed method is not limited to the use of this specific architec-
ture. We adapt the temporal convolution block from [1] by replacing the
regular convolutions with Gated Temporal Convolutions. The network
is composed of a series of residual Gated Temporal Convolution blocks,
see Fig. 5 with a fully-connected layer as an embedding space at the end.
The ResNet’s typical skip-connections add the input of the residual path
to the output to enable deeper networks, see Fig. 5. The Rectified Linear
Unit (ReLU) activations [23] after each convolution do not change values in the mask channels, as
their range is [0, 1]. The channel size 𝐶 is constant throughout the network but the dilation rate is
increased with depth.
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...
...

Trajectories with roles Role to channel mapping

Fig. 6. Channel assignment by role: the trajectories on the left are assigned to channels based on their role
𝑟 . Each channel corresponds to only one role, e.g., channel1 always contains left wingers or remains empty
(such as channel0.)

4.3 The Assignment Problem
To estimate the similarity between two trajectory ensembles we need to have a reliable assignment
of trajectories between the two ensembles with each trajectory itself being of dimension 𝐶 ×𝑇 .
This is different from convolutional network learning on image data where we assume a stable
ordering of color channels. Our idea is to still consider trajectory ensembles like images when we
learn convolutional filters. We map each trajectory to a channel, so that the kernel learns on the
𝐶-dimensional space with 𝐶 as the temporal information for the multiple intensity values of 𝑇 .

We require a stable ordering of channels (as it is the default case for color channels in image
processing). A channel encodes information that convolution kernels learn, and neural networks
presumably even extract an abstract meaning from these. Hence, we also construct assignment
schemes that aim for relatively stable orderings. However, we also investigate if a random assign-
ment (that breaks with the assumption) is also a suitable channel assignment method.

(1) Random Assignment. For each game, the trajectory assignment to a channel is stable, but
then random in between games. This introduces randomness as the assignments preserve no roles.
We hypothesize that this unbiased assignment looses valuable additional meta-information, e.g.,
player roles or positional grids, that the more sophisticated schemes can capture.
(2) By Role. For each trajectory, we may know meta information on its specific role, e.g., in

soccer, there exist a multitude of formations. We can construct an assignment that assigns each role
a separate channel. Given trajectory ®𝑥 (𝑖) with a role 𝑟 , we assign ®𝑥 (𝑖) to the channel 𝑐 (𝑟 ), where 𝑐
is a bijective map from the set of roles to channel indices. The roles are unique in each scene. The
twins of the Siamese Network can learn two trajectory ensembles where both have 𝑐1 populated,
but one twin has channel 𝑐0 masked out in favor of another channel, see Fig. 6 for an illustration.
This assignment method leads to sparse input data when the roles in two compared scenes do

not match up. For the soccer use case, a total of 23 roles are defined but only a subset is populated
with data. With two teams, this results in a total of 47 channels, i.e., 23 per team and the ball, and
a high degree of sparsity. We fill empty channels with zeros and use masks during the training
procedure to deal with these missing values.
(3) Inferred from data. Alternatively to using meta information, we infer assignments from

trajectory data. We construct these assignments either as role positions, using a fixed set of artificial
template trajectories similar to [32], or as grid positions, that are uniformly spatially distributed. Both
approaches are illustrated in Fig. 7. We calculate role positions using the Hungarian algorithm [18]
and align the trajectory ensembles to the template. Each position 𝑝 in the template is mapped to
channel 𝑐 (𝑝) bijectively. If trajectory ®𝑥 (𝑖) is assigned to 𝑝 𝑗 , ®𝑥 (𝑖) will be inserted into 𝑐 ( 𝑗). Each
cross (position) in Fig. 7a corresponds to a channel-trajectory pair and symbolizes a role. Hence,
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Attribute Range Meaning
Identity N The data-generating entity, e.g., player-id.
Role {0, . . . , 21} Encoding of player role
Team {0, 1} Encoding of the team
Period {0, 1} Game period
X [−52.5, 52.5] Position in metersY [−34, 34]
T N Time of recording
Ball possession {0, 1} Encoding of team in ball possession
Game activity {0, 1} Indicates if game was paused or active
T N Time of recording

Table 1. Trajectory data and meta information in the dataset.

there are 22 positions in the template for the soccer use case, transforming the data into a sparse
representation.
To calculate grid positions we use an unbiased template with increased spatial resolution. The

network thus learns a set of roles from data instead of relying on pre-defined roles. This increases
sparsity but also computational cost. Similarly to role positions, we again use the Hungarian
algorithm to align the trajectory ensembles (during training). The Siamese networks rely on
the gating mechanism to handle sparse inputs that result from some assignment methods, an
architectural property that generalizes beyond the soccer domain. Section 5 shows a performance
analysis and ablation study which discuss the benefits of our proposed solution.

5 EXPERIMENTAL SETUP
5.1 Dataset
The dataset we used for our experiments consists of 306 soccer matches from the 1. Bundesliga
from season 2014/15. We discarded two of these games due to incorrect or missing annotation. For
each match, positions for each player and the ball were extracted from multi-perspective video
feeds at a sampling rate of 25 Hz. The trajectory data structure is given in Tab. 1, and includes
meta-information such as roles, ball possession or whether the game was active or not.
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(a) Role position template.
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40

30

20

10

0

10

20
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(b) Grid position template.

Fig. 7. Channel assignment templates: each cross indicates the constant position of a trajectory in the
template over time. Fig. 7a shows an assignment template based on the expected role position. Fig. 7b shows
an assignment template based on a grid of trajectories. It is composed of nine different positions in the
horizontal axis and five in the vertical axis. The difference between trajectory counts for each axis was chosen
such that the positions are approximately spaced out equidistantly.
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Pre-processing.We describe the pre-processing steps to convert the dataset into an appropriate
scene representation for Siamese Neural Networks with Gated Temporal Convolutions. We extract
game scenes of fixed length to generate trajectory ensembles. In our experiments, we set the length
to either 5 s (as suggested in [10, 31, 32]) or 20 s (which was suggested by a number of sports
scouts we interviewed). For our experiments, we simplify the implementation by applying several
constraints to the extracted data1:
• One team has significantly more ball possession than the other (this circumvents an assign-
ment over teams).
• The attacking team plays from left to right in order to use an absolute coordinate system.
This ensures that differences if the playing direction in two otherwise identical scenes do not
complicate the distance calculations.
• The game is active (not paused) for most of the time during the scene. This filters irrelevant
parts of the game.
• No players are missing during the scene (even though our method could handle sparse data).

Normalization. Common normalization schemes such as mean subtraction and division by
standard deviation (assuming a Gaussian distribution) is impractical for distance functions as
maximum-likelihood estimation quickly becomes intractable on large datasets. The number of
distances is quadratic in the number of scenes, so we approximate the normalization, while the
statistics for the inputs ®𝑋 can be estimated directly. For the approximation, we use a running-average,
i.e., similar to batch normalization, using the following (iterative) update rules:

𝜇
(𝑥)
𝑖+1 = (1 − 𝛽)𝜇 (𝑥)

𝑖
+ 𝛽E[𝑥𝑖 ] (5)

𝜎
(𝑥)
𝑖+1 = (1 − 𝛽)𝜎 (𝑥)

𝑖
+ 𝛽

√︁
Var[𝑥𝑖 ] (6)

with the momentum parameter 𝛽 ∈ [0, 1] determining the mass of the moving average and a series
of values 𝑥𝑛 , stopping after 100,000 steps. The inputs ®𝑋 are then normalized as:

®𝑋 ← (
®𝑋 − 𝜇 ( ®𝑋 ) )
𝜎 ( ®𝑋 )

. (7)

For the distance𝑑 however, the mean-subtraction must be omitted, as otherwise it may take negative
values, which the Siamese network cannot produce. Hence, we downscale the distances to preserve
ordering between samples via

𝑑 ( ®𝑋, ®𝑋 ′) ← 𝑑 ( ®𝑋, ®𝑋 ′)
𝜎 (𝑑)

. (8)

5.2 Configuration
For our experiments, we extract in total (after pre-processing) about 1,200,000 scenes of 5 s and
400,000 scenes of 20 s from 304 games. We split the scenes extracted from the matches into
three sets for training, validation and test at 80/10/10% ratio, e.g., for 20 s long scenes this yields
309,665/44,424/44,536 samples per dataset. However, due to its combinatorical nature, we cannot
process all possible combinations and their distances. Hence, we construct large subsets for 5 s and
20 s by randomly sampling scene pairs and computing their ground-truth distances, resulting in
(per scene length) 10 million pairs for the train dataset, and 1 million each for validation and test
dataset.
For all experiments we use PyTorch [24] and the Adam optimizer [16] with an initial learning

rate of 𝜂 = 1𝑒−3 and 𝛽1 = 0.9 and 𝛽2 = 0.99 for the momentum terms, the decay factor 𝑠𝜂 = 1𝑒−1

1These are only meant to simplify our implementation but do not pose any limitations on our method in general.
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every 𝑁𝜂 = 5 epochs, for 15 epochs in total. We set the 𝐿2 weight penalty 𝜆1 to 0.001. Preliminary
experiments showed no convergence issues due to drifting, hence we set the embedding 𝐿2 penalty
𝜆2 = 0. All inferences are computed using single-threaded code on an AMD Ryzen 7 2700 processor
with 16GB RAM and a GeForce RTX 2070 GPU while we use NVidia Tesla V100 GPUs for training.

5.3 Evaluation Metrics
The evaluation metrics measure the errors introduced by the learned representations. For retrieval,
we are interested in (1) the structural correspondence, (2) the ordering and the neighborhood
structure, and (3) the retrieval set comparison.
(1) Structural correspondence. First, we measure the structural correspondence between the

distance of pairs in the original and the learned representation using theMSE and theMean Absolute
Percentage Error (MAPE). MAPE is the expected absolute error relative to the ground-truth in
percent, e.g., a MAPE of 10% means that on average, the prediction is off by 10 percent:

MAPED =
1
|D|

|D |∑︁
𝑖=1
|
𝑑 ( ®𝑋𝑖 , ®𝑋 ′𝑖 ) − 𝑑 ( ®̂𝑥𝑖 , ®̂𝑥 ′𝑖 )

𝑑 ( ®𝑋𝑖 , ®𝑋 ′𝑖 )
|. (9)

(2) Ordering and neighborhood. The ordering and neighborhood information of scenes is
crucial. However, evaluating the performance of approximations of the nearest neighbor search
on the full dataset is prohibitively expensive. Hence, we only work on the smaller subset of the
validation datasetM𝑠𝑢𝑏 , containing 5025 scenes with all 5025 · 5024/2 ground truth distance pairs.
We use the top-N Mean Spearman Rank Correlation Coefficient (MSRCC) as a metric onM𝑠𝑢𝑏

to analyze the structure of the embedding, i.e., the scene ordering between the ground-truth and
the Euclidean distance in the embedding. We use rank correlation to quantify the correspondence
between the scene ordering in the ground-truth and in the embedding as approximation errors
that change the ordering between samples are more relevant.

We calculate the MSRCC as follows. For a query scene ®𝑋𝑞𝑢𝑒𝑟𝑦,𝑖 we find the 𝑁 nearest neighbors
{ ®𝑋0, ..., ®𝑋𝑁 } and the distances to them 𝐴𝑖 = {𝑑 ( ®𝑋𝑞𝑢𝑒𝑟𝑦,𝑖 , ®𝑋0), ..., 𝑑 ( ®𝑋𝑞𝑢𝑒𝑟𝑦,𝑖 , ®𝑋𝑁 )} using the ground-
truth distances. We compute their distances in the embedding 𝐴𝑖 = {𝑑 (𝑓𝜃 ( ®𝑋𝑞𝑢𝑒𝑟𝑦,𝑖 ), 𝑓𝜃 ( ®𝑋0)), ...
, 𝑑 (𝑓𝜃 ( ®𝑋𝑞𝑢𝑒𝑟𝑦,𝑖 ), 𝑓𝜃 ( ®𝑋𝑁 ))} and the Spearman rank correlation coefficient 𝑟𝑖 = r(𝐴𝑖 , 𝐴𝑖 ) between
distances in embedding and ground-truth. The MSRCC for D is then the average over every query
scene:

MSRCCD =
1
|D|

|D |∑︁
𝑖=0

𝑟𝑖 . (10)
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We evaluate the top-N MSRCC for 𝑁 = 100, as the nearest neighbors are
the most relevant samples for the data retrieval use case, and for the whole
dataset in order to assess the overall structure.
(3) Retrieval set comparison. To quantify how many of the closest 𝑁

scenes are retrieved via the embedding, we calculate the top-𝑁 Mean Intersec-
tion over Union (MIoU). This is the intersection between the 𝑁 closest scenes
in the embedding and in the ground-truth divided by their union, averaged
over every query scene. We can therefore relate it to an adaption of the ac-
curacy metric that measures the ratio between the number of scenes that are
correctly retrieved and the number of scenes that are incorrectly retrieved in
the top-𝑁 . In Fig. 8, the MIoU is given as a function of the accuracy, e.g., the
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top-100MIoU of 0.5 means that about 67 of the 100 closest scenes were also
in the closest 100 scenes in the embedding.

6 EVALUATION
We first evaluate the quality of the retrievals by analyzing the scenes that our method returns
(Sec. 6.1) and by analytically comparing the embedding neighborhood structure with ground-truth
retrievals (Sec. 6.2). Next, we compare the retrieval speed of our approach against a naïve baseline
and Chalkboarding (Sec. 6.3), and assess the system’s generalization on a hold-out test dataset
(Sec. 6.4). We conduct an expansive ablation study (Sec. 6.5) that performs a sensitivity analysis on
important hyper-parameters (Sec. 6.5.1), ablates our proposed gating mechanism (Sec. 6.5.2) and
learns distances for longer scene lengths (Sec. 6.5.3).

6.1 Scene Retrieval
We begin by showing exemplary retrieval queries and results for two different configurations of our
method, i.e.,𝑀 = 2 and𝑀 = 64. The query scene 𝑞1 in Fig. 9a resembles a cross from the left flank.
Its nearest neighbors (retrieved by our method) in Fig. 9b (for𝑀 = 2) and in Fig. 9c (for 𝑀 = 64)
make it very obvious that our method is capable of learning at very different levels of detail. In the
query 𝑞1 all players rush towards the defending team’s goal, i.e., the scene is highly dynamic. In
contrast, the query result for𝑀 = 2 shows a much more static game situation. The positional layout
is also different: the query result for 𝑀 = 2 is clinched relative to 𝑞1 in the horizontal axis. The

Team 1 Team 2 Ball

(a) Query scene 𝑞1.

Team 1 Team 2 Ball

(b) Neighbor of 𝑞1 in𝑀 = 2.

Team 1 Team 2 Ball

(c) Neighbor of 𝑞1 in𝑀 = 64.

Fig. 9. Different scenes. The start of each trajectory is indicated by a circle. The attacking team is shown in
blue, the defending in green, and the ball in red. Fig. 9a shows the query scene with a corner kick used for
retrieval of the nearest neighbors in different embedding sizes𝑀 . Fig. 9b and 9c show the query results for 𝑞1
retrieved via a 2- and 64-dimensional embedding, respectively.

(a) 2D UMAP of 64D embed-
dings.

Team 1 Team 2 Ball

(b) Query scene 𝑞2.

Team 1 Team 2 Ball

(c) Query scene 𝑞3.

Fig. 10. The 64D embedding neighborhood that was fitted to a 2D manifold seemingly shaped like a curved
plane in Fig. 10a (using UMAP [22]), and we highlight the queries 𝑞1, 𝑞2 and 𝑞3. The scenes 𝑞2 in 10b and 𝑞3
in 10c show vastly different plays compared to 𝑞1, especially in location. This is also visible on the manifold.
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(b) Top-100 MSRCC.

Fig. 11. Left: MSRCC for the subsetM𝑠𝑢𝑏 over all scenes; Right: MSRCC for the top-100 with increasing
embedding dimensionality𝑀 for each channel assignment method.

ball trajectory is also misplaced. The learned embedding resembles an approximation of the center
of mass of a scene as𝑀 = 2 does not allow for a rich representation of the scene. However, with
an increased size of𝑀 = 64 the model learns a very exact and powerful representation of scenes.
The resulting scene in Fig. 9c exhibits similar game dynamics, i.e., both teams rush towards the
defending team’s goal. This is a representative qualitative analysis which shows that our method
can retrieve subjectively similar scenes if the embedding dimension is appropriately set to capture
the actual information hidden in a scene.
Next, we analyze the learned embedding for𝑀 = 64 in order to get a clearer understanding of

what the network has learned. To this end, we visualize the validation dataset as a 2D UMAP [22]
heat map in Fig. 10a, and highlight the representation for 𝑞1 and for two additional query scenes
scenes, 𝑞2 in Fig. 10b and 𝑞3 in Fig. 10c. These scenes 𝑞2 and 𝑞3 show very different games and take
place at different corners. We see their positional arrangement on the learned manifold (here fitted
to 2D), that has the shape of a curved plane. We flatten out the manifold to resemble the game pitch
and see that the queries 𝑞1 and 𝑞2 are relatively close to where their games take place. Similarly,
the embedding of 𝑞3 mirrors this, as it takes place in the opposite corner. Note that while the 2D
UMAP simplifies the learned representations to their main, positional features, we saw in Fig. 9
that additional properties such as game dynamics are also modeled.

We saw that the 64D embedding contains additional learned features, like game dynamics, and
perform better than the 2D embedding. However, Fig. 10a can only give intuitive insights. Hence, we
provide further performance metrics and more in-depth analysis in the remainder of the evaluation.

6.2 Analysis of Embedding Neighborhood
We analyze the structure of the embedding space and measure how well our method preserves
inter-sample distances and hence the ordering of the retrieval results. For this, we compare the
original ordering of scenes with their embedded form on two different scales: on a fine scale, i.e.,
relative to the 100 nearest neighbors, and on a coarse scale, i.e., the position of a scene in the
embedding relative to all others sampled from theM𝑠𝑢𝑏 subset. The fine scale is important for
evaluating how well the ordering of the most relevant retrievals is maintained between the learned
representations, i.e., it measures the precision of our approach which is an important metric for
the task of scene retrieval. The coarse scale evaluates the general feasibility of the approach, e.g.,
whether it can be used as a method for clustering as pre-processor.
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Fig. 11a shows the coarse structural score for the wholeM𝑠𝑢𝑏 , i.e., the top-|M𝑠𝑢𝑏 | score. In this
experiment, Role Position shows the best performance, closely followed by Grid Position
and Random assignments. Role is left far behind as it has a strong inductive bias due to role
specific assignments that are suboptimal on more diverse scenes. Nevertheless, all assignment
methods perform better than the coefficient of 0.986, and hence are suitable for clustering at
least. Furthermore, all assignment methods show better performance with increasing embedding
dimensionality 𝑀 until 𝑀 = 16, from where they settle into a plateau. Overall, all assignment
methods for any embedding dimensionality, even for𝑀 = 2, show high MSRCC, indicating that
the coarse structure is captured very well.
Fig. 11b shows the fine scale Spearman rank correlation coefficient averaged over the nearest

100 neighboring scenes. This directly influences the retrieval quality. Here, the ordering of Random
assignments is best according to MSRCC, followed by Role, Role Position and Grid Position.
Even though Role Position was marginally ahead for the overall ordering, its ordering of the
nearest neighbors is worse than Random and Role. Again, all assignment methods improve with
increasing𝑀 until𝑀 = 16, after which they plateau. In contrast to the overall ordering of scenes,
the ordering of the nearest neighbors changes strongly with differing assignment methods and sizes
of embedding dimensionality. Even with relatively high MAPE, the overall ordering is captured well
(Fig. 11a), but when observing the ordering at a smaller scale the errors become visible (Fig. 11b).
The better fine scale performance of Role compared to its coarse scale results can be explained
by a greater benefit of the inductive bias of explicit role assignments for very similar scenes, in
contrast to detrimental effects when scenes, and thus the formation of players, are further apart.
As the high MSRCC indicates, the overall ordering is preserved well (which enables clustering

of the search space [32]), while the fine scale ranking is not perfectly preserved. To alleviate
the implications of this sub-optimal top-100MSRCC, we may instead evaluate the ground truth
distance to rank these 100 nearest results better, or even train a specific ranking algorithm for
top-100 similarly to [10].

We furthermore show the differences in MAPE between the larger validation set and the smaller
M𝑠𝑢𝑏 in Fig. 12. Differences are only marginal for Role Position and Grid Position, which
perform nearly identical on both datasets. However, both Random and Role exhibit a lower MAPE
in the validation set. These two assignment methods do not generalize as well as methods that
adapt the channel assignment to the actual positional layouts of trajectories in a scene. In larger
datasets, players may often switch actual roles depending on the game’s situation [3]. Models
without positional channel information have no additional indication of the dynamic role each
player fills in a scene.
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Fig. 12. Difference between the MAPE on the val-
idation set and the subsetM𝑠𝑢𝑏 for increasing
embedding size𝑀 and channel assignment meth-
ods. Negative values indicate that the MAPE for
M𝑠𝑢𝑏 was greater than for the validation set.

The high divergence of theM𝑠𝑢𝑏 subset from the
validation set indicates that Random and Role only
rely on static player roles, which do not necessarily
match well with dynamic roles in scenes, whereas
the methods Grid Position and Role Position
generalize better. We consider the small differences
for 𝑀 ∈ [2, 4] to be of less importance, because
models learn little to no dynamics as the previous
experiments show. This overly simplistic represen-
tation results in a lower generalization error, but
ultimately is not really usable either. Overall, Role
Position performs strong in the fine and coarse
settings, and also generalizes very well to larger
problems.
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6.3 Retrieval Speed
Our main goal is to enable real-time scene search
on very large datasets of trajectory ensembles. Hence, we evaluate the required retrieval time
for searches on 10K and 1M scenes and compare it with the previous state-of-the-art. For our
experiments, we use scenes of 5 s duration, with 11 trajectories per team and both teams accounted
for in the distance computation. The experiment is designed to be maximally fair, and we average
over 100 repetitions. All database scenes are in memory, no clustering is performed to limit the
search space, and the query is aligned to a template, i.e., both teams are aligned to their own
template that contains 11 trajectories.
To measure the retrieval time, we compute the distance between query and each sample in the

database. For our method, the retrieval speed is the time of one forward pass through the neural
network, followed by the computation of the Euclidean distance from the query’s embedding vector
to other embedded scenes. For all methods, we search only for the 10 scenes with smallest distance,
and do not sort the results.

We show the retrieval speed for varying sizes of embedding dimension in Tab. 2. As a baseline
we implemented a naïve (brute force) distance computation and also include Chalkboarding [31]
retrieval. With 10,000 scenes in the database, our method takes only about 10ms for 𝑀 ≤ 64,
while Chalkboarding takes 346ms and Baseline even takes 65 s, which is prohibitively long. At
embedding sizes of𝑀 ∈ [2, 4, 16, 64], searches are not limited by the distance function computations.
With𝑀 ∈ [256, 1024] it begins to affect retrieval times with 17ms to 45ms. With smaller𝑀 , the
cost of computing forward passes through the network is nearly constant as only the last fully-
connected layer varies with𝑀 . The largest part of the 9 − 11𝑚𝑠 run time is data transfer overhead,
e.g., GPU to CPU transfer and vice versa, while the distance computation time itself is minimal.

There aremainly two reasonswhy ourmethod outperforms Chalkboarding. First, Chalkboarding
expensively aligns queries to the learned template, and second, it computes the ranking based on
23 trajectories, hence one distance computation operates over a 23 × 2 × 125 dimensional tensor in
contrast to only𝑀 values in the embedding.

The larger experiment with 1M scenes corresponds to almost an entire season (305 games). As the
data does not fit into main memory we could not compute results for Baseline, Chalkboarding,
and our method with𝑀 = 1024. However, from the available experiments it is apparent that their

Method Retrieval time 10k scenes Retrieval time 1M scenes
Baseline 68.887𝑠 > 1 h

Chalkboarding 0.346𝑠 > 30 s

𝑀 = 2 0.009𝑠 0.052𝑠

𝑀 = 4 0.009𝑠 0.054𝑠

𝑀 = 16 0.010𝑠 0.100𝑠

𝑀 = 64 0.011𝑠 0.287𝑠

𝑀 = 256 0.017𝑠 0.998𝑠

𝑀 = 1024 0.045𝑠 -
Table 2. Evaluation of the retrieval time using differently sized embeddings, the Chalkboarding [31] retrieval
system and the baseline. All retrieval speed tests except for the baseline are averaged over 100 runs.
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retrieval times are not competitive, i.e., >1 h and >30 s. Instead, our method yields an interactive
retrieval time. Between𝑀 = 16 or𝑀 = 64 it offers an interesting trade-off.𝑀 = 16 requires only
about 35% of the time of𝑀 = 64 but increases MAPE by about 18%. The lower error rate for𝑀 = 64
should be preferred if the resulting set of nearest neighbors is not further refined or ranked, i.e.,
similar to Chalkboarding’s two-step cluster-then-refine approach.

6.4 Generalization
We also assess generalization on a hold-out dataset that contains 30 matches. We design our
experiment as follows. We sample 1M pairs from this unseen test set and compute the MAPE
between the pair-distances and their representation in the embedding. The difference between the
MAPE computed on the test and validation set allows us to evaluate how our approach generalizes
to unseen data.

We use the best performing channel assignment method Role Position and set the embedding
size 𝑀 = 64. This offers a speedy retrieval with relatively low error on the validation set with
a MAPE of 2.66%. On the test set, this optimal model achieves a MAPE of 2.68%. This minimal
generalization error of about 0.02% shows that our method learns a general representation which
is not only a fit to the training data, but also works on previously unseen scenes.

6.5 Ablation Study
6.5.1 Sensitivity Analysis. We study the sensitivity of our approach to different sizes of the embed-
ding dimension 𝑀 ∈ [2, 4, 16, 64, 256, 1024] and the channel assignment methods Grid Position,
Random, Role Position and Role on the validation set, in order to measure their impact on the
approximation error.

Fig. 13 shows the MSE to the left and the MAPE to the right. The experiments were performed the
validation-set over three runs. Here, we report the evaluation for the network when the validation
loss is minimal. The MSE on the left shows errors irrespective of the location of the ground-truth
trajectory. However, a low MAPE does not necessarily follow from a low MSE. The MAPE is a
measure of how relevant the scenes are ranked on average, by comparing the nearest neighbors
in the embedding. Role Position shows best performance followed closely by Random and Role.
We see low variability over repeated runs for each of the assignment methods. For all of them,
performance increases rapidly until 𝑀 = 16, and then plateaus from 𝑀 = 64 to 𝑀 = 1024. In
contrast, the channel assignment by Grid Position shows slightly worse performance with a
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Fig. 13. Validation-set MSE loss (left) and MAPE (right) computed on predetermined set of pairs with
increasing embedding dimensionality𝑀 for each channel assignment method. The points indicate the median
over three runs. The colored areas correspond to the standard deviation centered around the mean. Note that
the x-axis has a logarithmic scaling.
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higher variability over repeated runs. However, with the larger capacity of𝑀 = 1024 it catches up
to the other assignment methods (at the cost of compute time).
The decrease in error with increasing embedding dimension 𝑀 is expected. With a larger 𝑀 ,

more scene features can be embedded into the representation. Interestingly, the performance of
most models improves only up to 𝑀 = 64. We hypothesize that this is due to a lack of model
capacity in the feature extractor. The maximum width of channels during the feature extraction
is 128, the networks learn solely based on these features. Accordingly, embedding sizes greater
than𝑀 = 128 use an under-determined projection matrix, i.e., some of the embedding axes linearly
depend on each other and are redundant. Hence, scaling the width of the models could allow models
with large𝑀 to improve further.

The channel assignment methods exhibit varying degrees of sparsity and of positional encoding.
The evaluation results for Grid Position, Role Position and Role suggest that sparsity impacts
performance negatively. We next examine the positive impact of our gating mechanism onto sparse
data.

6.5.2 Ablating Gating Mechanism. In this work we introduced a novel gating mechanism for TCNs
for sparse data to address the assignment problem. Here, we investigate the performance benefits in
an ablation study. We show differences for sparse (channel assignment) inputs through the masking
operation.
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Fig. 14. ΔMAPE wo/ gating over differ-
ent embedding dimensionalities 𝑀 ∈
[4, 16, 64].

In Fig. 14 we show the differences ofMAPE values between
the full and the ablated TCN architecture without gating
mechanism. The sparsest method Role shows clear perfor-
mance degradation compared to the more dense methods
Grid Position, Random and Role Position. The changes
range within 0.3% MAPE, i.e., the expected worsening of
performance due to missing information is more subtle.
The absolute MAPE for Random, Role Position and Grid
Position is slightly below 3% and Role around 3.75%. In
essence, omitting the gating mechanism clearly leads to a de-
creased predictive performance, with the realistic real world
configuration of𝑀 = 64 showing the largest difference.

Overall, the effect on all sparse channel assignment methods is larger than for the dense Random
assignment, indicating that sparse assignment methods benefit from information in the masks. We
explain the minimal change for Random due to the complete lack of additional information that
masks encode for it, i.e., every mask value is one. Hence, the performance improvements can be
partially accounted to the increased model capacity from additional mask channels. Interestingly,
the degree of sparsity does not affect the effect size, as Role benefits to a larger extend than does
Grid Position. To summarize, our gating mechanism improves performance in most (useful)
scenarios, likely due to the information encoded through the masks and the increased model
capacity, while the sparse channel assignment methods improve most.

6.5.3 Scene Length. Besides sport scenes of 5 s length for smaller scale analysis, sports scientists
and scouts are also interested in larger strategic movements over longer periods of time. Generally,
for other applications, the complexity of the data varies greatly, e.g., the amount of data per
scene between bird foraging and urban transportation patterns. For these reasons we evaluate our
learning method for longer scenes of 20 s length, which exhibit a larger feature complexity. In our
experiment, we make use of all four assignment methods and use the previously best performing
network architecture but extend the input width and receptive field size accordingly. We used a
training set of 10 million scenes.
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Fig. 15. MAPE for 20 s scene length.

The experimental results in Fig. 15 forM = 64 show an
increased absolute approximation error of a MAPE of 6.3%
with Random assignments, and 5.8% for Role Position. This
error increased compared to the previous 3.47% at 5 s scene
length. With respect to the local neighborhood ranking for
20 s scene length, we find that the error did not increase sim-
ilarly to MAPE, with very good performance of a top-|M𝑠𝑢𝑏 |
MSRCC of still 0.97, and the fine granular neighborhood top-
100 ranking MSRCC of 0.69. Also the top-100 ranking score
MIoU is high (0.57). This means that the overall retrieval
accuracy remains almost unchanged. For the longer scenes of 20 s duration, their pair-wise dis-
tances grow larger, and following from that, their neighborhood structure thins out, with neighbors
farther apart from each other. Hence, the absolute approximation error MAPE has less impact on
(local) ranking because absolute pairwise distances are also larger. This shows that our approach is
especially well-suited for more complex data due to its typically larger distances and also due to
the massive savings of computation time.
Moreover, using an estimate of the embedding density we could derive an optimal cluster size

to restrict the search space in a principled way. Instead of directly using the embedding for scene
ranking, computing the exact ground truth distance in a cluster is feasible. Here, MAPE serves as
the expected radius in which most relevant scenes lie.

7 CONCLUSION
We proposed a novel approach to similarity-based scene retrieval of trajectory ensembles that uses
approximations to the assignment problem at much lower computational costs than state of the
art. Using Siamese Networks at its core we learn a low-dimensional representation that preserves
the distance between sample pairs and thus accelerates the search by several orders of magnitude.
The low approximation error allows fast search and subsequent ranking of the closest neighbors,
while leaving the global neighborhood structure almost unchanged. We propose and evaluate four
channel assignment methods, both application agnostic or biased for role-based (sports) trajectories,
and found the hybrid Role Position to work best for the evaluated sports tracking application.

Our experimental results prove that our method learns non-trivial trajectory features like game
play dynamics, and users can select an optimal trade-off between estimation accuracy and search
speed, depending on the application. Furthermore, the proposed gating mechanism increases
performance for sparse channel encoding.

In conclusion, our approach enables a highly accurate and interactive retrieval of similar scenes.
A trivial extension with a two-step ranking system could additionally incorporate a refined second
ranking step of the top-100 retrieved samples, using the exact distance computation on original
sample representations. Furthermore, adapting our framework to applications in similar team sports
like basketball or ice hockey is obvious, especially in datasets of unordered trajectory ensembles.
The method may help the analysis of data from in-store tracking of customer movement by finding
similar movement patterns. In the medical domain, learning the similarity of parameters of walking
gait only from movement trajectories (specifying a human motion simulator) could benefit. In radio-
frequency positioning, interference minimization in a changing environment is a hard problem, that
could profit from accelerated search of historically similar channel/frequency and sender/receiver
assignments.
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