AN EVALUATION METHODOLOGY FOR INSIDE-OUT INDOOR POSITIONING BASED ON MACHINE LEARNING

Christoffer Löffler*, Sascha Riechel*, Janina Fischer*, Christopher Mutschler*[†]

* Fraunhofer Institute for Integrated Circuits IIS, Machine Learning and Information Fusion Group, Nuremberg, Germany

⁺ Friedrich-Alexander University of Erlangen-Nuremberg FAU, Machine Learning and Data Analytics Lab

{christoffer.loeffler | riechesa | janina.fischer | christopher.mutschler} @iis.fraunhofer.de

Motivation

Novel methods of camera-based self-positioning using machine learning may soon become a real alternative to more classical approaches.

Warehouse Dataset

The indoor logistics *Warehouse* dataset aims at providing a solid basis for the development and evaluation of machine learning based positioning schemes.

Without the need for hand-crafted optical features like QR-codes, antenna infrastructure and less required storage or computational performance, the potential benefits are considerable.

Goal

For enabling the transfer of data driven methods into real-world applications, we developed an evaluation methodology and dataset for a very challenging warehouse environment.

The data recording platform on the L.I.N.K. 3D Positioning System recorded data in an intra-logistics environment (*Warehouse*).

The dataset covers an area of 1,320m² and contains 464,804 images of 640x480 pixels. One trajectory was recorded on a forklift, the others using the L.I.N.K. 3D Positioning System. Each image was labeled with a 3D position ground truth that was recorded using the highly precise optical Nikon iGPS system. The dataset includes different scenarios that allow a detailed analysis of positioning schemes based on the evaluation criteria:

- Two trajectories on horizontal and vertical trajectories can be used to train.
- Eight trajectories on various paths through the warehouse.

The *warehouse* environment is very challenging, classical feature-based schemes like Colmap (left) and VSFM (right) fail.

Evaluation Criteria

The methodology evaluates various properties of tested algorithms:

- Generalization Can the algorithm interpolate previously unseen positions that are close to already seen positions?
- Environmental scaling Does the accuracy differ over area scales?
- Scale transition How does the algorithm perform in small or large scale areas?
- Volatility How robust is the algorithm against features which are not in the training dataset?
- Ambiguity Does the algorithm tolerate ambiguous (i.e., repetitive

Selection of trajectories from the *warehouse dataset*

Results

We present the representative CNN-based approach PoseNet.

- The evaluated positioning scheme can generalize well in open and large scale environments and has difficulties in narrower and small scale areas.
- Smaller volatile features added to the environment are tolerated by the scheme, but larger changes (e.g., movable shelves) reduce the performance drastically.
- Ambiguous features were confused by the scheme.
- As expected, Motion artifacts let the scheme fail almost completely.

or untextured) features in environment?

Motion artifacts How do blurry images, unsteady angles or new view points influence the prediction performance?

25 25 -20 20 [u] h 15 [u] 15 10 x [m] x[m]25 -25 -20 < [ยี 15 า [u] 15 10 15 20 20 30 25 30 20 25 x [m] x [m] x [m]