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Mo#va#on – Why do we do this?
Self-posi#oning systems in a logis#cs environment

n Real-time tracking in logistics environment (e.g. indoor warehouses) 
is often used for tracing goods and optimizing the logistics processes

n Radio-based or camera-based outside-in positioning has a high 
setup effort and is impractical in some scenarios (e.g. occlusion)

n Camera-based inside-out self-positioning mostly utilizes hand-
crafted markers or natural features such as edges 

Ø Both approaches require expensive feature detection

Ø Changes in the environment result in poor performance

Ø Structure from Motion (SfM) sometimes fails completely

n Some camera-based systems rely on assistance from additional 
knowledge (e.g. 3D Models) or sensors (e.g. RGB-D cameras)

Ø Costly and limited usability (e.g. distance limits)
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Mautz et al. (2011) [1]

Visual SfM problems

Hammad Tariq [10]
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Mo#va#on – Why do we do this?
Applica#on of self-posi#oning systems in a logis#cs environment

n Recent advances in machine learning, such as regression forests and 
deep convolutional neural networks (CNNs) become an alternative

n Example: PoseNet by Kendall et al. (2015) [2]

n Deep Learning architectures learn relevant features from the 
images and regress the according position

n Advantages of such systems

n No markers or additional sensors needed

n Robustness to previously unseen or blurry images

n ...however, these are often tested outside or in small environments

n Questions from an indoor positioning point of view remain open 
(e.g. lighting conditions, varying environment scales, etc.)
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PoseNet by Kendall et al. (2015)

Pairwise Relative Poses, by Laskar et al. (2017)
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Related Work
Camera-based Positioning Evaluation Datasets

n Outdoor Datasets

n Cambridge Landmark [2]

n Small Indoor Datasets

n 7 Scenes [4]

n University [3]

n Large Indoor Datasets

n Baidu [5]

n Ma^erport3D [6]

n Wijams [7]

n InLoc [8]

n TU Munich Large Scale-Indoor dataset [9]
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Related Work
Camera-based Positioning Evaluation Datasets

n Outdoor Datasets

n Cambridge Landmark – (+) for outdoor posigoning (-) does not cover indoor navigagon scenarios

n Small Indoor Datasets

n 7 Scenes – (+/-) highly textured scenes (-) only small areas (-) no global ambiguiges

n University – (-) ground truth obtained by using Google Tango; accuracy is between 6cm and 3m

n Large Indoor Datasets

n Baidu – (+) high precision recording (-) only one route (-) low number of images (~600 training images)

n Ma^erport3D – (+) differently textured scenes (-) no bigger environmental and illuminagon changes

n Wijams – (+) differently textured scenes (-) no environmental and illuminagon changes

n InLoc – (+) many environmental changes (-) only images in small office areas

n TU Munich Large Scale-Indoor dataset – (-) no appearance changes such as moved structures or occlusion
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Related Work
Evalua#on Criteria for Camera-based Posi#oning Schemes

n Most of the existing evaluation methods have flaws

n Overlapping Training/Test data, but no systematic test approaches

n Methodically recorded training data, randomly sampled test data

n Test data selection usually is not described sufficiently

n Accuracy metrics vary throughout different works

n Most common is a percentage of predictions below a threshold 
(e.g. position error <5cm)

n In some works the median position and orientation error is used

Ø Leaves out error over time, error distribution, axis-specific errors 
and location-specific behavior, i.e., problematic untextured walls
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Our Contribu#on

n Compiling a large dataset in a realistic logistics environment with 
special test cases

n For sufficient training and testing the setup evaluation criteria

n Standardized evaluation criteria

n For tackling the problem of variating criteria in different works

n Application of the evaluation criteria and the dataset on a Deep 
Learning Architecture with more precise metrics
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Warehouse - A dataset for applying standardized evaluation criteria

n Warehouse dataset

n Aim: providing a solid basis for the development and evaluation of 
ML-based positioning schemes

n Area: 1,320m²; Images: 464,804; Image size: 640 x 480 pixels

n Images labeled with a sub-millimeter position and sub-degree 
orientation using laser-based reference system (Nikon iGPS) 

n A Recording platform with 300mm diameter that carries eight 
cameras (calibrated Logitech C270) facing in different directions.

n Recording took place in the Fraunhofer L.I.N.K. hall in Nuremberg

n The dataset provides training and evaluation sequences

n 2 Training sequences to cover the area of warehouse

n 8 Evaluation sequences for tackling the evaluation criteria
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Warehouse - A dataset for applying standardized evaluation criteria

n Training sequences

n Combinagon of horizontal and 
vergcal grid 

n Grid spacing of 0.5m

Seite 9



© Fraunhofer 

Evaluation Criteria and the according datasets
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n Generalization Criteria (1/6)

n Algorithm can predict previously unseen 
positions that are close to seen positions, 
but fails on areas further away

n 3 Datasets

n Generalization large space (0.1m spacing)

n Large open area with larger distances 
to more ambiguous global features 

n Generalization small space (0.1m spacing)

n Only in close area around high racks

n Cross

n Varying distances than training
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Evalua#on Criteria and the according datasets
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n Environmental scaling (2/6)

n Positioning performance can differ over 
area scales 

n 2 datasets

n Small scale area

n Large scale area

n Scale Transition (3/6)

n Small and large scale areas in same 
dataset can affect performance (e.g. due 
to scale-invariant features)

n 1 dataset

n Scale transition
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A dataset for applying standardized evalua#on criteria
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n VolaTlity (4/6)

n Algorithm can fail to generalize to changed/volagle 
features which are not in the training dataset

n 1 dataset

n Volaglity (new, movable racks are added to the 
scene)

n MoTon ArTfacts (5/6)

n Blurry images, unsteady angles or new view points 
can influence the predicgon performance heavily

n 1 dataset

n Forkliq (recording plarorm on forkliq)

n Ambiguity (6/6)

n Ambiguous (i.e., repeggve or untextured) features 
in environment affect predicgon accuracy
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Applying the Evaluation Criteria to a DL positioning schemes

n Utilized Deep Learning system

n PoseNet by Kendall et al. (2015) [2]

n Convolutional Neural Network based on GoogLeNet for inferring 
positions from images

n Training on Nvidia GTX 1080, Test on Nvidia GTX 1070

n Metrics for evaluating the DL system

n Mean Absolute Error 2D (MAE 2D)

n Circular Error Probable 2D (CEP)

n Circular Error 95 Percentile 2D (CE95)

n Rotation Circular Error Probable (RCEP)
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DL Architecture

Input
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Results
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Generalization 
Open Area

MAE 2D 1.72m
CEP   1.06m
CE95  5.05m
RCEP  0.27°

Generalization 
Rack Area

MAE 2D 2.43m
CEP   1.76m
CE95  7.96m
RCEP  0.457°

Large Scale

MAE 2D 1.14m
CEP   0.90m
CE95  2.83m
RCEP  0.18°

Small Scale

MAE 2D 2.31m
CEP   1.17m
CE95  8.99m
RCEP  0.18°

2D Error < 2m 2D Error > 2m
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Results
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Cross

MAE 2D 1.08m
CEP   0.86m
CE95  3.08m
RCEP  0.18°

Forklift Motion

MAE 2D 6.67m
CEP   5.42m
CE95  16.6m
RCEP  145.6°

Ambiguity

MAE 2D 2.59m
CEP   1.26m
CE95  15.86m
RCEP  0.32°

Volatility

MAE 2D 2.5m
CEP   1.74m
CE95  7.35m
RCEP  0.56°

2D Error < 2m 2D Error > 2m
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Conclusions

n Contributions

n Introduction of the first dataset for self-positioning in a large 
industrial indoor scenario with high precision ground truth labels

n Introduction of six criteria to properly evaluate ML-based positioning 
schemes

n Application of the criteria and the dataset on a popular ML-based 
algorithm shows their strengths and weaknesses in different scenarios

Ø Using our contributions, ML-based positioning systems can be 
evaluated and developed under consistent criteria with better insights 
and comparability

n Future Work

n Use our dataset to evaluate complementary positioning schemes

n …that incorporate temporal correlation of features using, e.g. 
Bayesian filters and LSTM cells

n …that incorporate additional sensors, e.g. IMUs, etc.
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Questions?

n Warehouse dataset download

n h^ps://www.iis.fraunhofer.de/warehouse

n Contact

n Christoffer Löffler – christoffer.loeffler@iis.franhofer.de

n Sascha Riechel – riechesa@iis.fraunhofer.de 
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