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Supply Chain Management System through RFID

Motivation — Why do we do this?
Self-positioning systems in a logistics environment

Loaded Trucks
carrying tagged
A ems

B Real-time tracking in logistics environment (e.g. indoor warehouses) .o
is often used for tracing goods and optimizing the logistics processes

Radio-based or camera-based outside-in positioning has a high
setup effort and is impractical in some scenarios (e.g. occlusion)

3.

Hammad Tariq [10]

R

Mautz et al. (2011) [1]

Camera-based inside-out self-positioning mostly utilizes hand-
crafted markers or natural features such as edges

Both approaches require expensive feature detection
Changes in the environment result in poor performance

Structure from Motion (SfM) sometimes fails completely

Some camera-based systems rely on assistance from additional
knowledge (e.g. 3D Models) or sensors (e.g. RGB-D cameras)

Costly and limited usability (e.g. distance limits)




Motivation — Why do we do this?
Application of self-positioning systems in a logistics environment

B Recent advances in machine learning, such as regression forests and
deep convolutional neural networks (CNNs) become an alternative

Example: PoseNet by Kendall et al. (2015) [2]

Deep Learning architectures learn relevant features from the
images and regress the according position

B Advantages of such systems
No markers or additional sensors needed
Robustness to previously unseen or blurry images
B ..however, these are often tested outside or in small environments

Questions from an indoor positioning point of view remain open
(e.g. lighting conditions, varying environment scales, etc.)




Related Work
Camera-based Positioning Evaluation Datasets

B OQutdoor Datasets
Cambridge Landmark [2]
B Small Indoor Datasets

7 Scenes [4]

University [3]

Heads Office Pumpkin RedKitchen Stairs

M Large Indoor Datasets
Baidu [5]
Matterport3D [6]
Wijams [7]

InLoc [8]
TU Munich Large Scale-Indoor dataset [9]
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Related Work
Camera-based Positioning Evaluation Datasets

M OQutdoor Datasets
Cambridge Landmark — (+) for outdoor positioning (-) does not cover indoor navigation scenarios
B Small Indoor Datasets
7 Scenes — (+/-) highly textured scenes (-) only small areas (-) no global ambiguities
University — (-) ground truth obtained by using Google Tango; accuracy is between 6cm and 3m
M Large Indoor Datasets
Baidu — (+) high precision recording (-) only one route (-) low number of images (~600 training images)
Matterport3D — (+) differently textured scenes (-) no bigger environmental and illumination changes
Wijams — (+) differently textured scenes (-) no environmental and illumination changes
InLoc — (+) many environmental changes (-) only images in small office areas

TU Munich Large Scale-Indoor dataset — (-) no appearance changes such as moved structures or occlusion
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Related Work
Evaluation Criteria for Camera-based Positioning Schemes

B Most of the existing evaluation methods have flaws
Overlapping Training/Test data, but no systematic test approaches
Methodically recorded training data, randomly sampled test data

Test data selection usually is not described sufficiently

M Accuracy metrics vary throughout different works

Most common is a percentage of predictions below a threshold
(e.g. position error <5cm)

In some works the median position and orientation error is used

Leaves out error over time, error distribution, axis-specific errors
and location-specific behavior, i.e., problematic untextured walls
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Our Contribution

B Compiling a large dataset in a realistic logistics environment with
special test cases

For sufficient training and testing the setup evaluation criteria
B Standardized evaluation criteria
For tackling the problem of variating criteria in different works

M Application of the evaluation criteria and the dataset on a Deep
Learning Architecture with more precise metrics
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Warehouse - A dataset for applying standardized evaluation criteria

B Warehouse dataset

Aim: providing a solid basis for the development and evaluation of
ML-based positioning schemes

Area: 1,320m?; Images: 464,804; Image size: 640 x 480 pixels

Images labeled with a sub-millimeter position and sub-degree
orientation using laser-based reference system (Nikon iGPS)

A Recording platform with 300mm diameter that carries eight
cameras (calibrated Logitech C270) facing in different directions.

Recording took place in the Fraunhofer L.I.N.K. hall in Nuremberg
B The dataset provides training and evaluation sequences
2 Training sequences to cover the area of warehouse

8 Evaluation sequences for tackling the evaluation criteria




Warehouse - A dataset for applying standardized evaluation criteria

B Training sequences

Combination of horizontal and
vertical grid

Grid spacing of 0.5m
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Evaluation Criteria and the according datasets

B Generalization Criteria (1/6)

Algorithm can predict previously unseen
positions that are close to seen positions,
but fails on areas further away

B 3 Datasets
Generalization large space (0.1m spacing)

Large open area with larger distances
to more ambiguous global features

Generalization small space (0.1m spacing)
Only in close area around high racks
Cross

Varying distances than training
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Evaluation Criteria and the according datasets

B Environmental scaling (2/6)

Positioning performance can differ over
area scales

2 datasets
Small scale area

Large scale area

M Scale Transition (3/6)

Small and large scale areas in same
dataset can affect performance (e.g. due
to scale-invariant features)

1 dataset
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A dataset for applying standardized evaluation criteria

B Volatility (4/6)

251
Algorithm can fail to generalize to changed/volatile

features which are not in the training dataset 20

1 dataset

yinm

151

Volatility (new, movable racks are added to the
scene)

B Motion Artifacts (5/6) °

Blurry images, unsteady angles or new view points

can influence the prediction performance heavily 25

1 dataset

20

Forklift (recording platform on forklift)
B Ambiguity (6/6)
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in environment affect prediction accuracy 2




Applying the Evaluation Criteria to a DL positioning schemes

M Utilized Deep Learning system
PoseNet by Kendall et al. (2015) [2]

Convolutional Neural Network based on GooglLeNet for inferring
positions from images

Training on Nvidia GTX 1080, Test on Nvidia GTX 1070
B Metrics for evaluating the DL system

Mean Absolute Error 2D (MAE 2D)

Circular Error Probable 2D (CEP)

Circular Error 95 Percentile 2D (CE95)
Rotation Circular Error Probable (RCEP)
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Results

25 Generalization
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MAE 2D  2.43m
CEP 1.76m
CE95 7.96m
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Large Scale
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Results
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Conclusions

B Contributions

Introduction of the first dataset for self-positioning in a large
industrial indoor scenario with high precision ground truth labels

Introduction of six criteria to properly evaluate ML-based positioning
schemes

Application of the criteria and the dataset on a popular ML-based
algorithm shows their strengths and weaknesses in different scenarios

Using our contributions, ML-based positioning systems can be
evaluated and developed under consistent criteria with better insights
and comparability

M Future Work
Use our dataset to evaluate complementary positioning schemes

...that incorporate temporal correlation of features using, e.g.
Bayesian filters and LSTM cells

..that incorporate additional sensors, e.g. IMUs, etc.
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Questions?

Computer Facts
f \ Folgen ] v
Wl @computerfact

concerned parent: if all your friends jumped
off a bridge would you follow them?
machine learning algorithm: yes.

12:20 - 15. Marz 2018

B Warehouse dataset download

https://www.iis.fraunhofer.de/warehouse

B Contact
Christoffer Loffler — christoffer.loeffler@iis.franhofer.de

Sascha Riechel —riechesa@iis.fraunhofer.de
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